首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   4篇
  国内免费   1篇
大气科学   7篇
地球物理   32篇
地质学   14篇
海洋学   7篇
天文学   14篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2017年   4篇
  2016年   4篇
  2015年   8篇
  2014年   5篇
  2013年   4篇
  2012年   5篇
  2011年   7篇
  2010年   4篇
  2009年   5篇
  2008年   2篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2002年   2篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1991年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有74条查询结果,搜索用时 343 毫秒
21.
Direct observations of the nuclear surfaces of comets have been difficult; however a growing number of studies are overcoming observational challenges and yielding new information on cometary surfaces. In this review, we focus on recent determinations of the albedos, reflectances, and thermal inertias of comet nuclei. There is not much diversity in the geometric albedo of the comet nuclei observed so far (a range of 0.025 to 0.06). There is a greater diversity of albedos among the Centaurs, and the sample of properly observed TNOs(2) is still too small. Based on their albedos and Tisser and invariants, Fernández et al. (2001) estimate that about 5% of the near-Earth asteroids have a cometary origin, and place an upper limit of 10%. The agreement between this estimate and two other independent methods provide the strongest constraint to date on the fraction of objects that comets contribute to the population of near-Earth asteroids. There is a diversity of visible colors among comets, extinct comet candidates, Centaurs and TNOs. Comet nuclei are clearly not as red as the reddest Centaurs and TNOs. What Jewitt (2002) calls ultra-red matter seems to be absent from the surfaces of comet nuclei. Rotationally resolved observations of both colors and albedos are needed to disentangle the effects of rotational variability from other intrinsic qualities. New constraints on thermal inertia of comets are consistent with previous independent estimates. The thermal inertia estimates for Centaurs 2060 Chiron and 8405 Asbolus are significantly lower than predicted by thermal models, and also lower than the few upper limits or constraints known for active, ordinary nuclei.  相似文献   
22.
We evaluated changes in siliceous export production and the source of organic matter preserved in sediment core MD07-3109H recovered from the Gulf of Ancud, Chiloé Inner Sea (42°S, 72°W, water column depth: 328 m), southern Chile. We analyzed the abundance of siliceous microfossils (diatoms, silicoflagellates, sponge spicules, Chrysophyte cysts, phytoliths), geochemical proxies (weight percent silicon %SiOPAL, organic carbon, total nitrogen, C/N molar), and sediment stable isotopes (δ13Corg, δ15N). Chronology based on 210Pb and 14C provided an accumulated age of 144 years at the base of the core.Sediments of core MD07-3109H are predominantly marine in origin, averaging δ13Corg=–20.75‰±0.82, δ15N=8.7±0.35‰, and C/N=8.76±0.36. Marine diatoms compose 94% of the total assemblage of siliceous microfossils. Our record of productivity based on the mass accumulation rates of organic carbon, total nitrogen, SiOPAL, and total diatoms showed high values between 1863 and 1869 AD followed by a declining trend until 1921 AD, a transition period from 1921 to 1959 AD with fluctuating values, and a clear decreasing pattern from 1960 AD to the present. This marked reduction in productivity was associated with decreased precipitation and Puelo River streamflow (41°S), as well as a warmer and more stratified water column, especially since the 1980s.  相似文献   
23.
We characterized the seasonal cycle of productivity in Reloncaví Fjord (41°30′S), Chilean Patagonia. Seasonal surveys that included measurements of gross primary production, community respiration, bacterioplankton secondary production, and sedimentation rates along the fjord were combined with continuous records of water-column temperature variability and wind forcing, as well as satellite-derived data on regional patterns of wind stress, sea surface temperatures, and surface chlorophyll concentrations. The hydrography and perhaps fjord productivity respond to the timing and intensity of wind forcing over a larger region. Seasonal changes in the direction and intensity of winds, along with a late-winter improvement in light conditions, may determine the timing of phytoplankton blooms and potentially modulate productivity cycles in the region.Depth-integrated gross primary production estimates were higher (0.4–3.8 g C m?2 d?1) in the productive season (October, February, and May), and lower (0.1–0.2 g C m?2 d?1) in the non-productive season (August). These seasonal changes were also reflected in community respiration and bacterioplankton production rates, which ranged, respectively, from 0.3 to 4.8 g C m?2 d?1 and 0.05 to 0.4 g C m?2 d?1 during the productive and non-productive seasons and from 0.05 to 0.6 g C m?2 d?1 and 0.05 to 0.2 g C m?2 d?1 during the same two periods. We found a strong, significant correlation between gross primary production and community respiration (Spearman, r=0.95; p<0.001; n=12), which suggests a high degree of coupling between the synthesis of organic matter and its usage by the planktonic community. Similarly, strong correlations were found between bacterioplankton secondary production and both gross primary production (Spearman, r=0.7, p<0.05, n=9) and community respiration (Spearman, r=0.8, p<0.05, n=9), indicating that bacterioplankton may be processing an important fraction (8–59%) of the organic matter produced by phytoplankton in Reloncaví Fjord. In winter, bacterial carbon utilization as a percentage of gross primary production was >100%, suggesting the use of allochthonous carbon sources by bacterioplankton when the levels of gross primary production are low. Low primary production rates were associated with a greater contribution of small cells to autotrophic biomass, highlighting the importance of small-sized plankton and bacteria for carbon cycling and fluxes during the less productive winter months. Fecal pellet sedimentation was minimal during this period, also suggesting that most of the locally produced organic carbon is recycled within the microbial loop. During the productive season, on the other hand, the area exhibited a great potential to export organic matter, be it to higher trophic levels or vertically towards the bottom.  相似文献   
24.
Nearly simultaneous photometry of the reflected and thermal infrared spectra of periodic comets Encke, Chernykh, Kearns-Kwee, Stephan-Oterma, and Tuttle are presented. The 10-μm, silicate emission feature has been detected for the first time in periodic comets and was observed in three of these objects. The albedo of the dust particles in the comae of these comets is calculted and compared to that of Comet Kohoutek. The peculiar behavior of the dust in Comet Encke is discussed.  相似文献   
25.
Abstract— Chondrules, silicate spheres typically 0.1 to 1 mm in diameter, are the most abundant constituents in the most common meteorites falling on Earth, the ordinary chondrites. In addition, many primitive meteorites have calcium‐aluminum‐rich inclusions (CAIs). The question of whether comets have chondrules or CAIs is relevant to understanding what the interior of a comet is like and what a cometary meteorite might be like. In addition, one prominent model for forming chondrules and CAIs, the X‐wind model, predicts their presence in comets, while most other models do not. At present, the best way to search for chondrules and CAIs in comets is through meteor showers derived from comets, in particular, the Leonid meteor shower. Evidence potentially could be found in the overall mass distribution of the shower, in chemical analyses of meteors, or in light curves. There is no evidence for a chondrule abundance in the Leonid meteors similar to that found in chondritic meteorites. There is intriguing evidence for chondrule‐ or CAI‐sized objects in a small fraction of the light curves, but further work is required to generate a definitive test.  相似文献   
26.
In recent years, open and data-driven science has fostered very important scientific breakthroughs. This study describes the challenges and opportunities for the scientific community devoted to bed form dynamics research in adopting such scientific paradigms through, for example, engineered data sharing, formal recognition of scientists who collect the data, and collaborative development of free accessible software. It highlights that once these actions are completed, the potential application of deep learning techniques could substantially improve bed form models and the scientific understanding of bed form dynamics. Likewise, it discusses the potential of Bedforms-ATM, a free available software, to standardize some bed form data analysis techniques. We propose that the technical challenges be tackled by following scholarly accepted/proposed standards (e.g. FAIR Guiding Principles, Geoscience Papers of the Future), using the body of knowledge being built on the matter by some institutions (e.g. Federation of Earth Science Information Partners), and through technical discussions at scientific meetings such as MARID. © 2020 John Wiley & Sons, Ltd.  相似文献   
27.
We compare 13 near-infrared (0.8-2.4 μm) spectra of two low albedo C complex outer-belt asteroid families: Themis and Veritas. The disruption ages of these two families lie at opposite extremes: 2.5 ± 1.0 Gyr and 8.7 ± 1.7 Myr, respectively. We found striking differences between the two families, which show a range of spectral shapes and slopes. The seven Themis family members (older surfaces) have “red” (positive) slopes in the 1.6-2.4 μm region; in contrast, the six Veritas members (younger surfaces) have significantly “flatter” slopes at these same wavelengths. Moreover, the two families are characterized by different concavity at shorter (1.0-1.5 μm) wavelengths with the Themis group being consistently flat or concave up (smile) and the Veritas group being consistently concave down (frown). Each family contains a broad range of diameters, suggesting our results are not due to comparisons of asteroids of different sizes. The statistically significant clustering of the two spectral groups could be explained by one of the following three possibilities or a combination of them: (1) space weathering effects, (2) differences in original composition, or (3) differences in thermal history perhaps as a result of the difference in parent body sizes. As a result of our analyses, we propose a new method to quantify broad and shallow structures in the spectra of primitive asteroids. We found reasonable matches between the observed asteroids and individual carbonaceous chondrite meteorites. Because these meteoritic fits represent fresh surfaces, space weathering is neither necessary nor ruled out as an explanation of spectral differences between families. The six Veritas family near-infrared (NIR) spectra represent the first NIR analysis of this family, thus significantly increasing our understanding of this family over these wavelengths.  相似文献   
28.
We find a clear diversity in the 3 μm and 10 μm features of three Cybele asteroids: (107) Camilla, (121) Hermione, and (65) Cybele. (121) Hermione exhibits a “check-like” 3 μm feature, which may be attributed to OH-dominated minerals and (107) Camilla shows a rounded “bowl” like feature closer to that of (65) Cybele, which may be attributed to H2O-dominated minerals. The 10 μm features of these three asteroids are also different from each other.  相似文献   
29.
The performance of different nonlinear modelling strategies to simulate the response of RC columns subjected to axial load combined with cyclic biaxial horizontal loading is compared. The models studied are classified into two categories according to the nonlinearity distribution assumed in the elements: lumped-plasticity and distributed inelasticity. For this study, results of tests on 24 columns subjected to cyclic uniaxial and biaxial lateral displacements were numerically reproduced. The analyses show that the global envelope response is satisfactorily represented with the three modelling strategies, but significant differences were found in the strength degradation for higher drift demands and energy dissipation.  相似文献   
30.
In November 2002, the sinking of the Prestige cargo ship produced an oil spill of 60,000 tons that affected many areas along the Galician coast (in the northwest of Spain). In a number of rocky shore sites, most organisms (particularly marine mollusks) were nearly extinct at a local scale. We tested whether the local bottleneck/extinction that occurred in affected localities caused any detectable reduction of the genetic diversity in the marine snail Littorina saxatilis, an ovoviviparous rocky shore model species characterized by a low dispersal ability, high population density, and wide distribution range. We compared the level of genetic variation and population differentiation between affected (polluted) and control sites located in seven geographical areas (three sites per area, one impacted and two controls, and two replicates per site) one and a half years after the spill. The analysis included molecular marker variation (microsatellite and AFLP loci) and quantitative trait genetic variation for shell variables in embryos extracted from pregnant females. Our results indicate that the affected populations did not show a significant overall reduction in genetic diversity when compared to the controls, suggesting that the species is highly resistant to losing genetic variability as a consequence of a local short-term pollution process in spite of its low dispersal ability and direct development. However, some genetic effects were detected in the polluted populations, particularly for quantitative shell traits and AFLPs, consistent with local adaptations resulting from the fuel contamination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号